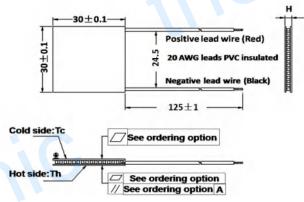
Specification of Thermoelectric Module

TEC1-07106

Description

The 71 couples, 30 mm \times 30 mm size module which is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to 70 °C, designed for superior cooling and heating up to 100 °C applications. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

Features

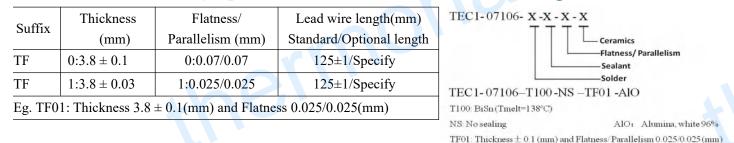

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

ApplicationFood and beverage service refrigerator

- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side
		0.6	
U _{max} (Voltage)	8.9	9.6	Voltage applied to the module at DT _{max}
I _{max} (amps)	6.2	6.2	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	34.7	37.9	Cooling capacity at cold side of the module under $DT = 0$ °C
AC resistance (ohms)	1.15	1.25	The module resistance is tested under AC
Tolerance (%)	± 10		For thermal and electricity parameters

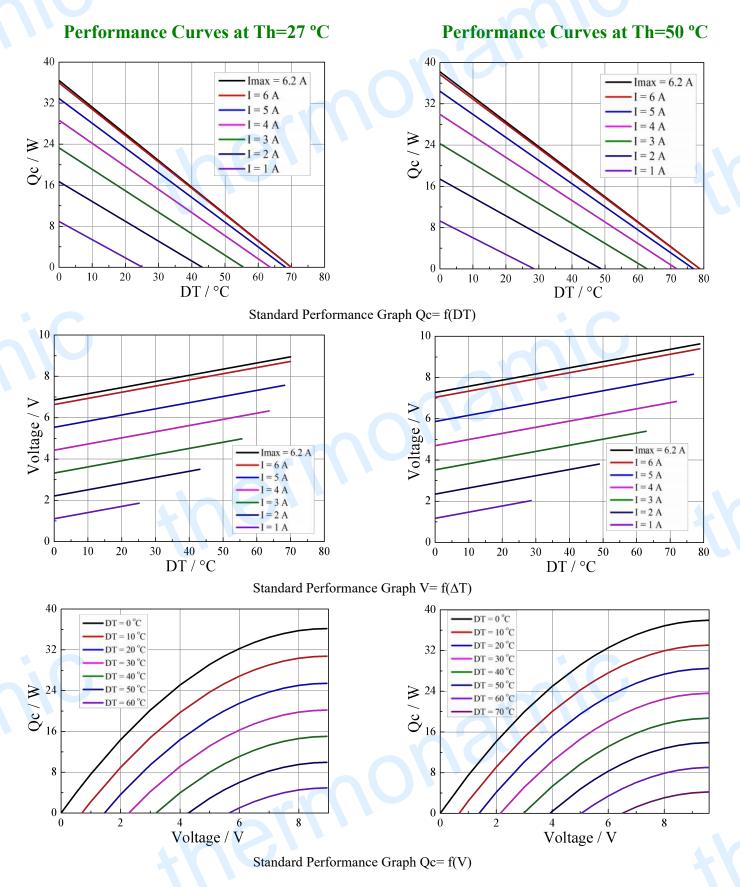
Geometric Characteristics Dimensions in millimeters


Ordering Option

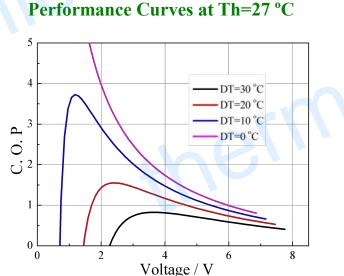
Manufacturing Options

A. Solder:	B. Sealant:
1. T100: BiSn (Tmelt=138°C)	1. NS: No sealing (Standard)
2. T200: CuAgSn (Tmelt = 217°C)	2. SS: Silicone sealant
3. T240: SbSn (Tmelt = 240°C)	3. EPS: Epoxy sealant
C. Ceramics:	D. Ceramics Surface Options:
1. Alumina (Al ₂ O ₃ , white 96%)	1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN)

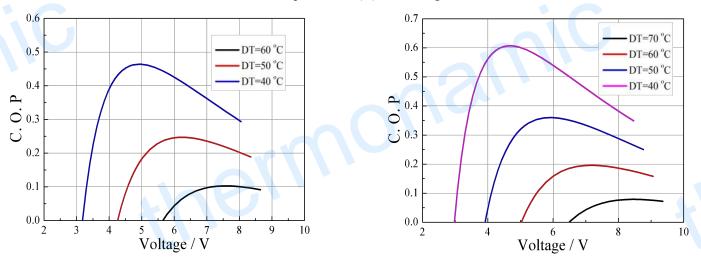

N) 2. Metalized Naming for the Module

Performance Specification Sheet


Specification of Thermoelectric Module

TEC1-07106

Specification of Thermoelectric Module


TEC1-07106

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- •Storage module below 100 °C
- \bullet Operation below $I_{max} \text{ or } V_{max}$
- Work under DC